Перейти к содержанию

Что такое гидроход на комбайне

Содержание

Что такое гидроход на комбайне

(097) 056-05-93, (099) 429-92-85, (093) 651-44-42

Магазин

Ремонт

Последние товары

Ремонт ГСТ комбайна Нива. Ремонт ГСТ гидростатической трансмиссии Нива ск 5

  • Печать
  • Электронная почта

Ремонт гидростатики ГСТ комбайна Нива. Ремонт гидростатики ГСТ трактора Нива. Ремонт гидростатической трансмиссии ГСТ Нива, Ремонт ГСТ Нива в Украине, Ремонт гидрохода Нива, Ремонт гидромотора Нива, Ремонт гидравлики Нива, Ремонт гидравлики Нива в Украине, Ремонт гидронасоса Нива +38(097)056-05-93

Гидростатическая трансмиссия Нива представлена в виде рабочего узла, состоящего из гидромотора и гидронасоса. Такой узел необходим, чтобы передавать механическую энергию исполнительным органам сельскохозяйственной и другой техники. У такого гидропривода с замкнутым контуром есть целый ряд плюсов:

— Возможно плавное изменение частоты вращения (в широком диапазоне). Это объясняет эффективность использования ГСТ Нива в машинах сельскохозяйственного назначения (зачастую, и в технике на гусеничном ходу).

— Не требует сцепления.

— Транспортное средство, в котором используется ГСТ характеризуется маневренностью.

— Гидравлика более упрощена с позиции конструктивного исполнения.

Компания Гидро-Спец-Торг производит ремонт ГСТ 90 на Дон 1500, а также ремонт ГСТ 72, ГСТ 112. Кроме этого, нами предлагается переоборудование комбайна Нива под ГСТ 90. У нас — опытные мастера и высококачественный ремонт гидростатики по приемлемым ценам, а также гарантия 12 месяцев. Мы принимаем оплату наличными, кроме того работаем по безналу с НДС. Вопросы, которые вас интересуют, вы можете задать по телефонам, указанным на сайте.

Мы предлагаем ремонт ГСТ комбайнов Дон 1500 и ремонт ГСТ на Ниву отечественного производства. Каждому современному аграрию важно для успешного ведения бизнеса, чтобы его машины всегда были в исправном, рабочем состоянии. Время от времени выходит из строя по вполне естественным причинам гидростатическая трансмиссия. В этом случае ремонт ГСТ будет необходимым и даже обязательным процессом.

Наши услуги также включают ремонт гидромоторов и ремонт гидронасосов. Если это необходимо клиенту, мы можем предоставить новые запчасти от производителя с гарантией.

Дон 1500, Дон 1500б, Дон 500, Дон 680, Дон 1200, Нива ск 5

Ремонт гидростатической трансмиссии ГСТ-90. Ремонт гидромотора МН-90. Ремонт гидронасоса НП-90. Ремонт гидростатики ГСТ-90. Ремонт гидростатической трансмиссии ГСТ-90. Ремонт гидрохода ГСТ-90 (097)056-05-93

Регулируемые аксиально-поршневые насосы серии НП-90 с наклонной шайбой и переменным рабочим объемом предназначены для работы в замкнутых контурах. Расход масла на выходе пропорционален частоте вращения вала насоса на входе и рабочему объему.
При этом величину рабочего объема можно бесступенчато регулировать от нуля до максимального значения. Направление подачи жидкости можно реверсировать путем изменения наклона шайбы в противоположную сторону от нейтрального.

Мы выполняем ремонт гидростатической трансмиссии ГСТ-90 согласно оригинальным чертежам и техническим условия завода производителя. После ремонта ГСТ 90 пара насос и мотор ставится на испытательный стэнд, для проверки под нагрузкой превышающей номинальную в два раза! После ремонт выписывается письменная гарантия, и гидростатика ГСТ-90 отдается заказчику.

Фото гидростатической трансмиссии ГСТ-90

В рамках ремонта гидростатической трансмиссии ГСТ-90 производится комплексная диагностика неисправности в гидравлическом контуре с использованием диагностических приборов, что в конечном итоге даёт представление о характере неисправности в гидросистеме. Ремонт гидростатической трансмиссии ГСТ-90 на строительную технику: мини погрузчики, погрузчики, бетоносмесители, дорожные катки, тракторы и комбайны. После согласованию с заказчиком производим разборку гидронасоса или гидромотора с последующим определением количества неисправных запасных частей для замены. После капитального ремонта гидравлических узлов производятся контрольные стендовые испытания.

Существует два вида гидростатики ГСТ 90 — с правым и левым вращением насоса. Ниже приведена таблица применяемости ГСТ-90 по вращению вала насоса

Левое вращение вала ГСТ-90.

Гидростатика ГСТ 90Л (Насос НП 90Л и Мотор МП 90)

Правое вращение вала ГСТ-90

Гидростатика ГСТ 90 (Насос НП 90 и Мотор МП 90)

Комбайны: КСК-4-1, МБС-6, КП C-5Г, КСК-100А-1, КСК-100А, КСКУ-6, Нива СК-5М-1 (с мостом ОАО „Гомсельмаш” и „ТКЗ”), СК-10Р, Енисей-950, Енисей-1200
Свеклоуборочные машины: РКМ-6, РКМ-6-01, РКМ-4, КС-6Б
Асфальтоукладчики: ДС-173, ДС-179
Автобетоносмесители: СМБ-049, СМБ-070
Породопогрузочная машина : МПК-3У
Дорожная машина : АСБ-6ТВ, Каток: ДУ-71

Комбайны: Дон-680, Дон-750, Дон-1200, Дон-1200Н, Дон-1500, Дон-1500Р, УЭС Полесье-250 К-Г-6.
Асфальтоукладчик: СД-404
Автобетоносмесители: АБС-6, СМБ-60, Каток: КС-1,
Подземный автопод: МоАЗ-7405-95865
Горные машины : УБШ-501Б, УБШ-312Б,
Погрузчики: ТМ-3, ПМТС-1200

Этапы ремонта гидростатической трансмисси ГСТ-90:

— мойка и разборка ГСТ-90;
— дефектовка ГСТ-90;
— замена вышедших их строя запасных частей ГСТ 90 на новые;
— проверка рабочих параметров на специализированном стенде;
— обкатка.

Гидронасосы ГСТ-90 переменной производительности преобразуют входной момент в гидравлическую мощность. Входной вал вращает блок цилиндров, который содержит поршни, расположенные по окружности. Поршни опираются на наклонную шайбу. При вращении вала поршни сжимаю рабочую жидкость, которая и передает энергию. Далее жидкость под высоким давлением вытесняется наружу и передает энергию рабочим органам.

Выполнить ремонт гидронасоса ГСТ 90 всегда лучше доверять сервисным центрам, где имеется все спецоборудование для этой работы. Угол наклона наклонной шайбы изменяется под действием управляющего поршня гидронасоса.

Изменение угла наклонной шайбы изменяет рабочий объем насоса и количество вытесняемой жидкости при постоянной частоте вращения входного вала.

Мы производим качественный ремонт гидронасосов и гидроприводов ГСТ-90.

Мотор постоянного объема МП-90 преобразует входную гидравлическую мощность в выходной момент. Жидкость под высоким давлением поступает внутрь мотора и давит на поршни, заставляя их двигаться к наклонной шайбе и поворачивать блок цилиндров, соединенный с выходным валом. При этом жидкость, отдав энергию, вытесняется из мотора. Выходной момент на валу мотора используется для выполнения требуемых механических операций.

В гидромоторе постоянной производительности наклонная шайба зафиксирована, поэтому изменение частоты вращения и момента на валу мотора может происходить только за счет насоса.

Гидронасосы гидростатики ГСТ-90 (серии SPV-90, НП-90) разработаны с последовательной системой ограничителя давления и предохранительного клапана высокого давления. Когда система достигает установленного максимального давления, ограничитель давления в гидронасосе мгновенно уменьшает подачу насоса для того, чтобы уменьшить давление в системе. В некоторых случаях при резком увеличении давления первым срабатывает предохранительный клапан высокого давления, переливая жидкость в контур низкого давления. Клапан ограничения давления в данном случае играет функцию пилота для предохранительного клапана высокого давления. Этот предохранительный клапан настроен на давление приблизительно на 35 бар больше, чем настройка клапана ограничителя давления.

Оба упомянутых выше клапана встроены в многофункциональный клапан гидронасоса.

Все гидронасосы Серии SPV НП-90 спроектированы с возможностью применения промывочных клапанов.

Промывочный клапан используется в установках, которым необходимо удаление из рабочего контура части жидкости для охлаждения, для использования в специфических условиях, требующих удаления продуктов износа из контура высокого давления.

Применяемость гидростатической трансмиссии ГСТ-90

Сельскохозяйственная техника: ДОН-1200Б, 1500Б, 680, 091, Енисей 1200П, Руслан, КС-6Б, КСК-4-1, МБС-6, КСП-5Г, РКМ-6-01, РКМ-4, КСК-100А-1, КСК-100А, КСКУ-6, Кедр- 1200, СК- 10Р, Полесье- 250.

Дорожно-строительная техника: ДС-173, ДС-179, ДУ-71, АТЭК-351, МПК-3У, 42184-27, АСБ-6ТВ, АБС-4, АБС -5, АБС -6, АБС -7, АБС -8ДА, СБ-92В, СБ -159Б, СБ -172-1, СБ -237, СМ-237, СМБ-060, СД-404, ДУ-96, ДУ-97, АПГ, ГТТ-М.

Ремонт гидростатики ГСТ-90 следующих комплектаций:

— Насос аксиально-поршневой регулируемый PVH90/MH1 L1D1A A1A1 AB N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C35 N (ГСТ 90)
— Насос аксиально-поршневой регулируемый PVH112/MH1 L1D1A A1A1 AB N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C42 N
— Тандем насосов (PVH112/MH1 L1D1A A1F16AB)+(GP25N-10N-L2.52AA4AA) N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C42 N
— Насос аксиально-поршневой регулируемый PVH112/MH1 R1D1A A1A1 AB N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C42 N
— Тандем насосов (PVH112/MH1 R1D1A A1F16AB)+(GP20N-R2.5AA4A) N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C42 N- Тандем насосов (PVH112/MH1 L1D1A A1F16AB)+(GP25N-10N-L2.52AA4AA) N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C35 N- Тандем насосов (PVH112/MH1 L1D1A A1F16AB)+(GP25K-2K-L2.51AA4AB) N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C35 N- Насос аксиально-поршневой регулируемый PVS90/MHRD2A1A1B N + Гидромотор аксиально-поршневой MFS90/D2A35 N
— Насос аксиально-поршневой регулируемый PVH112/MH1 R1D1A A1A1 AB N + Гидромотор аксиально-поршневой нерегулируемый MFH112/1D11A1C35 N.

Фото гидронасос НП-90

Фото гидромотор МП-90

Основные неисправности ГСТ-90 и возможные причины их возникновения

Быстрый нагрев гидросистемы. Перегрев гидросистемы ГСТ-90
— Низкий уровень масла в гидробаке
— Маслоохладитель ГСТ неисправен
— Низкий уровень настройки предохранительных клапанов

Низкое давление подпитки. Нагрев насоса подпитки
— Фильтр в линии всасывания засорен
— Засорена линия всасывания насоса подпитки
— Клапан подпитки ГСТ не настроен или неисправен
— Низкий уровень масла в гидробаке
— В линию всасывания попадает воздух
— Насос подпитки не исправен

Отсутствует управление давлением и подпитки
— Неисправен насос подпитки ГСТ90
— Неисправен клапан подпитки ГСТ90
— Неисправно приводное устройство основного насоса

Посторонний шум при работе гидростатической системы
— Воздух в гидросистеме
— Внутренние повреждения насоса или гидромотора

ГСТ 90 работает в одном направлении
— Дефект механизма управления
— Засорен дроссель ГСТ в линии управления
— Дефект одного из обратных клапанов
— Предохранительный клапан высокого давления ГСТ90 засорен или поврежден
— Внутренний дефект насоса

ГСТ 90 не работает в обоих направлениях
— Низкий уровень масла в гидробаке
— Засорены дросселя линий управления
— Дефект механизма управления
— Дефект насоса подпитки
— Засорен всасывающий фильтр ГСТ 90
— Дефект обратных клапанов клапана отсечки
— Дефект предохранительных клапанов
— Внутренние дефекты насоса или гидромотора

Медленный разбег и запаздывание
— Воздух в гидросистеме или низкое давление подпитки
— Износ деталей качающегося узла насоса и гидромотора

Низкий КПД гидростатической трансмиссии
— Низкий уровень масла в гидробаке
— Износ качающего узла насоса или гидромотора
— Колебания подачи гидронасоса при отсутствии управления
— Не выставлен ноль люльки гидронасоса

Течь по валу
— Износ либо дефект манжеты
— Износ шейки вала насоса

Таблица симптомов неисправности ГСТ-90 и способы их устранения

Проявление повреждений и отказов (ГСТ90 и других)

Возможная причина неисправностей (ГСТ90 и других)

Общие указания по устранению повреждений (ГСТ90 и других)

Воздух в насосе

Низкий уровень масла в баке — дозаправить

Трубопроводы недостаточно изолированы от несущих элементов конструкции

Эластичными прокладками изолировать места крепежа трубопроводов

Внутренние повреждения насоса

Заменить насос ГСТ

Насос ГСТ не работает ни в одном из направлений

Низкий уровень масла в баке

Долить в гидросистему масла

Тяга механизма управления гидрораспределителя повреждена

Заменить тягу и проверить наличие шплинта, который влияет на работу механизма управления гидрораспределителя

Вышло из строя соединительное устройство между насосом и двигателем

Произвести замену соединения

Внутренние повреждения насосаГСТ

или как альтернатива — капитальный ремонт ГСТ, с восстановлением всех первоначальных заводских зазоров

Повреждение электрической цепи (при электрогидравлическом управлении)

Прозвонить цепь, устранить неисправность

Малое напряжение, подаваемое на электрогидрораспределитель(при электрогидравлическом управлении)

Проверить величину напряжения на соответствие

Электрораспределитель ГСТсломан

Насос ГСТ работает исключительно в одном направлении

Вышел из строя механизм управления гидрораспределителя

Заменить механизм управления

Повреждена электрическая цепь (при электрическом управлении)

Проверить цепь, устранить неисправности

Малое напряжение, подаваемое на электрогидрораспределитель (при электрическом управлении)

Проверить величину напряжения на соответствие

Заменить электрораспределитель

Машина не останавливается! Нулевое положение рычага трудно или невозможно определить

Повреждение управляющей тяги

Освободить управляющую тягу. Если при этом рычаг управления вернется в нулевое положение, значит, тяга установлена неправильно или ее заклинило

Насос ГСТ сильно перегревается

Низкий уровень масла в баке

Долить в гидросистему масла

Поверхность маслоохладителя очистить

Протекает масло через предохранительный клапан маслоохладителя

Повреждение и/или засорение клапана маслоохладителя. Снять клапан для чистки

Засорение фильтра или трубопровода

Заменить фильтроэлемент, прочистить всасывающий трубопровод

Потеря скорости и мощности в результате внутренней утечки жидкости

Заменить насос

Медленный разгон и малая скорость машины

Воздух в насосе

Низкий уровень масла в баке – дозаправить масло

Внутренний износ насоса

Произвести капитальный ремонт ГСТ или заменить насос НП

Купить ГСТ-90 можно у нас позвонив по номеру (097)056-05-93

Гидростатическую трансмиссию ГСТ 90 можно назвать сложным агрегатом. Он отвечает за управление гидроходом сельскохозяйственной техники и различной специальной техники. Как известно, в объемном гидроуправлении ГСТ-90содержатся такие гидроузлы, как: насос НП-90, а также мотор МП-90. Во время эксплуатации такие узлы, по наблюдениям специалистов, изнашиваются одинаково. Поэтому ремонт насоса и ремонт мотора необходимо проводить одновременно. Важность этих гидроузлов очень велика, следовательно, ремонт гидромоторов и гидронасосов в Украине должен проводится специалистами с необходимым опытом, техническими знаниями, с наличием качественных запчастей, хорошего оборудования и современных инструментов. Компания Гидро-Спец-Торг имеет в наличии все необходимое, чтобы были проведены качественный ремонт и реставрация гидромоторов и гидронасосов. После проведения ремонта, оборудование обязательно проверяется на специальном стенде, чтобы параметры были доведены до нужных ТУ.

Читайте также:  Технология ремонта вала нижнего шкива вариатора жатки комбайна ДОН-1500

Таблца технических характеристик ГСТ-90

Частота вращения вала номинальная об/мин

Частота вращения вала максимальная об/мин

Этапы ремонта ГСТ-90

Данная гидростатическая трансмиссия имеет несколько модификаций. Например, регулируемый гидронасос ГСТ-90, может быть левого или правого вращения. Кроме того, на валу гидромотора и гидронасоса бывает разное количество шлицов: 21 или 23. Однако независимо от этого, ремонт гидромотора, а также ремонт гидронасоса проводятся по одним и тем же этапам:

  1. Гидростатика ГСТ-90 подвергается разборке, мойке и дефектовке.
  2. Определяются ремонтные работы и проверяются запчасти.
  3. Неисправные запчасти заменяют на новые.
  4. Далее могут быть сварочные, токарные и шлифовальные работы, а также притирка.
  5. ГСТ-90 собирают и проверяют на стенде.

Комбайны: КСК-100, Енисей-950, Енисей 1200, Нива СК-5М-1, КП С-5Г, МБС-6, КСК-4-1

Свеклоуборочные комбайны: РКМ-6, РКМ-6-01, РКМ-4, КС-6Б

Асфальтоукладчики ДС-173, ДС-179

Автобетоносмесители СМБ-049, СМБ-070

Породопогрузочная машина: МПК-3У

Дорожная машина АСБ-6ТВ

Комбайны Дон-1500, Дон-1200, Дон-680, Дон-750, УЭС Полесье 250 К-Г-6

Автобетоносмесители АБС-6, СМБ-60

Подземный автопоезд МоАЗ-7405-95865

Горные машины УБШ-312Б, УБШ-501Б

Погрузчики ТМ-3, ПМТС-1200

Причины неисправностей ГСТ-90

Причин может быть очень много, поэтому профессиональная диагностика и ремонт гидростатики станут выходом из ситуации и шансом избежать еще более серьезных неприятностей.

— гидростатика перегревается по причине недостаточного количества масла, что при несвоевременном обращении может спровоцировать ремонт гидростатической трансмиссии;

— неисправности маслоохладителя ГСТ;

— настройка предохранительного клапана под низкое давление;

— перегрев насоса подпитки;

— в линии всасывания засор или воздух, что также повлечет за собой ремонт гидравлического насоса и ремонт гидравлического мотора;

— неисправности клапана подпитки, насоса подпитки ГСТ, поломка привода гидронасоса НП-90;

— гидростатическая трансмиссия работает с шумами, это одна из причин, почему может быть необходим ремонт гидрохода;

— Повреждения в гидромоторе или гидронасосе ГСТ-90, например, если разрушен подшипник;

— Механизм управления поврежден;

— Внутренние детали насоса ГСТ-90 изношены;

— Течь по валу гидромотора или гидронасоса и другое.

Таблица технических характеристик ГСТ отчественного производства

Автомобили для бездорожья. «Гидроход-49061» Часть 2

Авторское предисловие: В первой части статьи мы рассказали об истории автомобиля «Гидроход-49061», разработанного научно-исследовательской фирмой «НАМИ-Сервис» совместно с ОГК СТ АМО ЗИЛ. Опытный образец, созданный для реализации на практике идеи «гибкой» трансмиссии, стал объектом самых разнообразных исследований. Об этом и пойдет речь в статье.

«ГИДРОХОД-49061»

Автомобиль «Гидроход», как уникальная лаборатория на колесах, открывал широчайшие возможности перед исследователями. Так как от схемы раздачи мощности в трансмиссии зависят не только показатели проходимости, но и ряд других важнейших эксплуатационных свойств, автомобильная наука получила ценнейшую возможность изучить влияние никогда еще ранее не реализованного на автомобилях индивидуального регулируемого привода колес на тягово-скоростные и динамические показатели, управляемость и экономичность. Единственный в своем роде автомобиль с гидрообъемной трансмиссией представлял интерес для инженеров, так как давал возможность изучить особенности работы гидрообъемной передачи в нетипичной для нее роли привода колес. Это позволяло раскрыть потенциальные возможности гидротрансмиссии, исключить или снизить влияние ее недостатков.

Для решения всех этих задач целесообразно было провести комплексные испытания «Гидрохода» в различных дорожных условиях. Эти испытания были организованы самой фирмой «НАМИ-Сервис» и проводились в течение нескольких лет, получив высокую оценку специалистов, занимающихся вопросами распределения мощности в трансмиссиях автомобилей. Но этому этапу предшествовали еще предварительные испытания и длительная обкатка.

Первые километры и первые результаты

Испытания автомобиля было решено начинать сразу по окончании сборки, не дожидаясь готовности системы управления индивидуальными приводами колес. Первая установленная на «Гидроход» система ручного управления, обеспечивающая синхронное и симметричное регулирование всех трех гидроконтуров, позволяла провести обкатку машины, чтобы получить представление о том, как работает гидрообъемная трансмиссия в различных условиях. При этом в активе испытателей еще были возможности выбора блокированной или дифференциальной связи между условными осями, а также движения в неполноприводном режиме с приводом на любые одну или две оси.

Обкатка по внутризаводским дорогам ЗИЛа, проходившая весной 2003 г., не оставила сомнений по поводу работоспособности машины. Прямо скажем, это было большой удачей конструкторского коллектива — макетный образец, в который заложены совершенно нетипичные технические решения, мог и не оправдать ожиданий своих создателей.

В этот период, в апреле 2003 г., состоялись первые предварительные испытания «Гидрохода» на стенде с беговыми барабанами комплекса «Кавказ» УКЭР АМО ЗИЛ.

Несколько слов о том, что представляет собой этот испытательный комплекс. Это уникальное сооружение, предназначенное для испытаний легковых и грузовых автомобилей в экстремальных климатических условиях. В составе комплекса имеются аэроклиматическая камера и динамометрический стенд с двумя парами беговых барабанов, расстояние между осями которых можно регулировать под величину колесной базы исследуемого автомобиля. Оборудование аэроклиматической камеры позволяет проводить испытания при температуре воздуха от -60°С до +60°С, влажности — до 100% и скорости ветра до 150 км/ч, а на беговых барабанах имитируется движение со скоростью до 190 км/ч или различное дорожное сопротивление.

Конечно, применительно к «Гидроходу» все возможности заводского испытательного комплекса использовать и не планировалось. На данном этапе требовалось оценить работоспособность гидрообъемной трансмиссии при высоких рабочих давлениях и проверить соответствие тяговых показателей автомобиля полученным ранее расчетным значениям. При этом имелась возможность провести такую оценку отдельно для каждой оси автомобиля — напомним, что в конструкции трансмиссии «Гидрохода» предусмотрено как отключение отдельных гидроконтуров, так и отключение приводов отдельных колес. Однако, учитывая особенности конструкции стенда и самого автомобиля, было решено исследовать только две оси из трех. «Гидроход» установили на барабаны стенда передней и задней осями, колеса средней оси при этом сняли, а их привод отключили.

Результаты испытаний в какой-то мере даже превзошли ожидания разработчиков. В гидросистеме удалось развить давление 39 МПа, т.е. близкое к максимальному, которое могут развить примененные насосы (45 МПа). Высокие тяговые свойства машины даже стали причиной небольшого инцидента, произошедшего во время испытаний: от рамы «Гидрохода» оторвалась буксирная петля, к которой крепился трос лебедки, удерживающий машину на стенде, и автомобиль сорвался с беговых барабанов. Но все обошлось благополучно, и после испытаний следы «боевого крещения» устранили.

В августе 2003 г., во время подготовки «Гидрохода» к предварительным испытаниям, в подмосковных Бронницах проходила выставка военной автомобильной техники, организованная на базе НИИИ-21 МО РФ — головного института в этой области. Участие в этой выставке, традиционно включающей в себя демонстрационные заезды представленной техники на испытательном полигоне НИИИ-21, обещало стать важным и весьма ответственным этапом испытаний нового автомобиля, который позволил бы оценить проходимость в условиях тяжелого бездорожья и провести сравнительную оценку опытного образца с серийными армейскими автомобилями. Решение об участии «НАМИ-Сервис» в выставке было принято, и «Гидроход» сразу стал одним из наиболее интересных экспонатов, совершив несколько заездов по испытательной трассе института. Так состоялось первое появление этой машины на публике.

Осенью 2003 г. начались предварительные испытания «Гидрохода» на Автополигоне НАМИ, расположенном недалеко от г. Дмитров Московской области. Здесь уже можно было провести исследования в различных дорожных условиях. Помимо собственно испытательных заездов на асфальте, сухом и размокшем грунте, проводилась обкатка автомобиля как на дорогах полигона, так и на дорогах общего пользования.

Испытания проводились под руководством ведущего специалиста «НАМИ-Сервис» к.т.н. Г.Г. Анкиновича, а участие в них принимали ведущий инженер-исследователь ОГК СТ АМО ЗИЛ В.М. Ролдугин и инженеры «НАМИ-Сервис» АС. Переладов и А.А. Эйдман.

В первую очередь было решено определить максимальный угол преодолеваемого автомобилем подъема, поскольку это одна из важнейших характеристик тягово-динамических свойств любого автомобиля, причем не только внедорожного. Испытания производились на типовых подъемах большой крутизны (30, 40, 50, 60%) с асфальтовым покрытием, входящих в комплекс спецдорог Автополигона НАМИ.

Однако здесь испытатели столкнулись с проблемой, характерной для машины с равнорасположенными по базе осями: в начале подъема, где горизонтальное основание переходит в наклонную поверхность, происходило вывешивание колес средней оси автомобиля. Если на 30%-ном подъеме это практически не ощущалось, то на более крутых подъемах проявлялось все более заметно. Тогда было решено проводить каждый заезд в два этапа: сначала с разгону преодолевался перегиб в начале подъема, затем автомобиль останавливался, устанавливалось максимальное передаточное отношение трансмиссии, после чего преодолевался весь подъем без остановок. Одновременно оценивалась возможность преодоления подъема при дифференциальной или блокированной межосевой связи -«гибкое» регулирование трансмиссии еще не было реализовано.

Уверенно преодолев без остановки подъем 30%, «Гидроход» не смог с первой попытки преодолеть следующий подъем (40%) именно по причине вывешивания колес средней оси у основания подъема. При дифференциальной связи в трансмиссии это было вполне объяснимо. Вторая попытка с остановкой после преодоления перегиба подъема оказалась удачной. Автомобиль плавно тронулся с места и прошел весь наклонный участок. С блокированным межосевым приводом преодолеть этот же подъем с первого раза также не удалось. Как выяснилось, насос гидроконтура первой оси не вышел на рабочий режим, практически не развивая рабочее давление (2-4 МПа в сравнении с 15-20 МПа на других осях). И хотя в повторном заезде подъем удалось взять даже с ходу, без промежуточной остановки, проблема с гидроконтуром первой оси сохранилась. Поэтому при преодолении следующего, 50%-ного подъема мощности двигателя явно не хватало: автомобиль, вынужденно двигающийся с приводом фактически только на две оси, смог с разгона преодолеть лишь две трети подъема.

Но, несмотря на выявленные проблемы, испытания продолжились, и следующим запланированным экспериментом стало определение максимальной силы тяги, развиваемой автомобилем. Если ранее на заводском стенде тяговые свойства определялись раздельно для двух осей, то на этот раз предполагалось провести полноценные измерения на автомобиле с приводом на все колеса. Так как в конструкции «Гидрохода» была заложена возможность симметричного реверса (то есть передаточное число трансмиссии можно бесступенчато изменять как при движении вперед, так и назад в одном и том же диапазоне), представляло интерес определение максимальной силы тяги, развиваемой как при движении передним, так и задним ходом.

В этом эксперименте задействовали находившийся на автополигоне служебный тягач МАЗ-543, который буксировался «Гидроходом». Поскольку он был тяжелее «Гидрохода», буксирование начиналось с ходу: оба автомобиля трогались с места, затем водитель буксируемого МАЗ-543 начинал притормаживать машину, вплоть до полной остановки. Этот момент и соответствовал максимальному значению силы тяги.

Однако результаты этого эксперимента уже не были столь неординарными, как результаты стендовых испытаний на ЗИЛе. Связано это с тем, что в этот раз испытания проводились только при дифференциальной связи в гидрообъемной трансмиссии. Этот режим выбрали для того, чтобы исключить так называемую «циркуляцию мощности» в трансмиссии и тем самым предохранить колесные приводы от чрезмерных крутящих моментов. Но при гидродифференциальной связи высокие давления в трансмиссии не развиваются, и если ранее на стенде удалось развить практически предельное рабочее давление, то в этот раз максимальная зафиксированная его величина была всего 21 МПа.

Во время предварительных испытаний определялись также максимальная и минимальная скорости движения автомобиля. Максимальная скорость, достигнутая на динамометрической дороге автополигона, составила 82 км/ч, а минимальная — 0,9 км/ч. Благодаря гидрообъемному приводу «Гидроход» получил возможность длительного движения с минимальной (так называемой «ползучей») скоростью при сохранении достаточных тяговых свойств, так как в этом случае вся мощность двигателя передается колесам, в отличие, например, от обычной механической трансмиссии, где она будет большей частью затрачиваться на буксование сцепления. В одном из заездов на асфальтовой площадке удалось достичь устойчивой минимальной скорости 0,7 км/ч при частоте вращения двигателя, близкой к холостому ходу (750 об/мин). Конечно, на грунте, когда сопротивление движению выше, двигаться при оборотах холостого хода будет невозможно, но и в этом случае бесспорно преимущество применения на автомобиле высокой проходимости бесступенчатой трансмиссии с широким силовым диапазоном.

На предварительных испытаниях «Гидрохода» в сентябре 2003 г. выполнили и первые научные эксперименты. Связаны они были с теоретическими исследованиями, проводившимися в «НАМИ-Сервис», где под руководством профессора СБ. Шухмана постоянно шла работа по развитию теории движения автомобиля по твердым и деформируемым поверхностям. На тот момент перед испытателями была поставлена определенная научная задача — исследование колееобра-зования при движении автомобиля по деформируемому грунту.

Для проведения испытаний выбрали участок поля, примыкающий к границам автополигона. При движении «Гидроход» оставлял глубокую колею (до 30 см), так как грунт был очень влажным -испытательный участок представлял, по сути, пойменный луг. Все требуемые экспериментальные данные для исследований были получены, а сам автомобиль продемонстрировал, что даже при дифференциальной связи в трансмиссии он может двигаться по размокшему грунту.

За время обкатки по дорогам автополигона, как асфальтовым, так и фунтовым, «Гидроход» прошел около 300 км. Отмечалось, что автомобиль уверенно двигается по песчаному покрытию и преодолевает на грунте подъем 16%. В продолжение этих исследований было решено после предварительных испытаний возвращать автомобиль в Москву своим ходом, хотя до этого все перегоны «Гидрохода» на большие расстояния — в Бронницы, в Дмитров и обратно — осуществлялись на жесткой сцепке. Несмотря на некоторые сложности, автомобиль преодолел большую часть пути (около 50 км) своим ходом, а оставшееся расстояние — на буксире. Следует признать, что с точки зрения безопасности движения в условиях города это решение являлось оправданным: органы управления автомобилем были еще очень несовершенными, а его поведение на дороге — не всегда предсказуемым. Так, например, выяснилось, что гидрообъемная трансмиссия при движении накатом очень эффективно выполняет роль тормоза, в связи с чем рабочая тормозная система практически не использовалась. Специфичной была и управляемость «Гидрохода». Автомобиль с передними и задними управляемыми колесами, безусловно, обладает лучшей маневренностью, чем автомобиль только с одной управляемой осью, но управлять им на высокой скорости сложнее, так как часто возникает «рыскание» машины по дороге. А помимо этого типичного для таких автомобилей свойства, управляемости «Гидрохода» были присущи и индивидуальные особенности. Дело в том, что связь между рулевыми приводами передней и задней осей была гидрообъемной, а не жесткой механической, поэтому задние колеса при выходе на прямую не всегда возвращались в исходное положение. Такая рулевая система была в свое время в опытном порядке установлена на несколько ранних экземпляров амфибии ЗИЛ-49061, один из которых и стал основой для «Гидрохода». По понятным причинам такая конструкция себя не оправдала, и на последующих серийных «Синих птицах» рулевые приводы передней и задней осей были связаны механически. Тем не менее, на «Гидроходе» эта не совсем удачная система сохранилась.

Читайте также:  Обзор комбайна «Claas Tucano-450»

Однако не следует оценивать необразцовую управляемость автомобиля на дороге как просчет конструкторов. Не будем забывать о том, что «Гидроход» — это специальное транспортное средство, предназначенное для работы на бездорожье. Ведь конструкция многих вездеходов СКВ ЗИЛ была бескомпромиссной: решения, которые обеспечивали превосходную проходимость на бездорожье, неизбежно затрудняли движение по обычным дорогам. Примером может служить бортовая трансмиссия, не говоря уже о нетрадиционных движителях наподобие шнека.

Что касается удобства управления «Гидроходом», то, конечно, машина с бесступенчатой трансмиссией превосходит автомобиль с механической коробкой передач, но следует учесть, что на данном этапе система управления была упрощенной, и в ней требовалось в зависимости от сопротивления движению подбирать передаточное число трансмиссии с помощью джойстика и регулировать обороты двигателя педалью. В идеале управление такой трансмиссией должно осуществляться только от педали акселератора.

Во время предварительных испытаний немало проблем доставил двигатель. Стало совершенно очевидным, что для уверенного движения автомобиля его мощности явно недостаточно (в частности, это показало преодоление подъемов). Мотор не выдерживал работы с действующими нагрузками и имел огромный расход топлива, достигавший 1,5 л бензина АИ-95 на километр пути. Самой серьезной проблемой обернулись перегревы двигателя. Они наблюдались постоянно, хотя в период испытаний стояла прохладная осенняя погода. Конечно, свой вклад вносили и недостатки системы охлаждения, например, неудачное расположение радиатора, который находился практически за стенкой кабины, но техническое состояние двигателя ЗИЛ-4104 еще при монтаже на автомобиль было далеко не идеальным.

Однако этот мотор «не сдался» даже после решения о замене его на дизель. Ведущий испытатель В.М. Ролдугин вспоминал интересный случай при перегоне автомобиля на ЗИЛ для замены двигателя в апреле 2004 г. Несмотря на все сложности, было принято решение отправлять автомобиль на завод своим ходом. Поездка, в основном проходившая по Третьему транспортному кольцу, прерывалась неоднократными остановками для охлаждения двигателя. Тем не менее «Гидроход» преодолел весь путь до завода, и вдруг уже на территории «родного» отдела ОГК СТ двигатель заглох. Причиной оказалась пробитая прокладка головки блока цилиндров. Но на следующий день сотрудникам отдела вновь удалось завести двигатель, и автомобиль своим ходом доехал до ремонтного бокса.

В августе 2004 г. «Гидроход» выехал с завода с новым дизельным двигателем «Detroit Diesel». Систему охлаждения двигателя существенно переработали: радиатор был вынесен в расширенный корпус воздухозаборника за кабиной, где он лучше обдувался потоком воздуха, и оснащен блоком из четырех электровентиляторов. С ЗИЛа автомобиль сразу был отправлен в Бронницы на проходившую в это время очередную выставку военной автомобильной техники в НИИИ-21, где вновь принял участие в демонстрационных заездах. По работе двигателя теперь не имелось никаких нареканий.

После выставки «Гидроход» вновь вернулся на Автополигон НАМИ. Однако повторение прошлогодних исследований в этот раз не планировалось: первоочередной задачей на тот момент являлась сертификация опытного образца, для чего потребовалось провести измерение некоторых нормативных величин. В числе прочих определялись внешний шум и предельный угол опрокидывания автомобиля, которые оказались в пределах нормы.

По окончании этих исследований «Гидроход» перегнали на ЗИЛ, где совместно с сотрудниками «НАМИ-Сервис» были проведены некоторые доработки автомобиля. Самым главным нововведением, появившимся в этот период, стал пульт ручного управления, с помощью которого можно было индивидуально управлять каждым насосом и гидромотором. Это устройство позволило вручную задавать любое рассогласование в трансмиссии, имитируя тем самым «гибкий» регулируемый колесный привод. Теперь уже можно было непосредственно перейти к исследованиям различных типов привода в трансмиссии.

Всесторонние испытания

Наиболее обширные испытания автомобиля «Гидроход» (включавшие и период зимних испытаний) проводились в 2005-2006 гг.

В коллектив «НАМИ-Сервис» в этот период вошли выпускники кафедры «Автомобили» МГТУ «МАМИ» — С.Н. Коркин, Р.Х. Курмаев, М.А. Малкин, которые участвовали во всех последующих испытаниях и модернизации «Гидрохода» совместно со своими старшими коллегами А.С. Переладовым и А.А. Эйдманом. В первый год проведения испытаний участие в них принимали также В.М. Ролдугин и выпускник МАМИ инженер Д.Н. Гусаков.

В начале июня 2005 г. «Гидроход» вновь доставили на Автополигон НАМИ. Основным этапом комплексных испытаний стали испытания на проходимость автомобиля по фунту, для чего был подготовлен участок поля у поселка Дуброво Дмитровского района, рядом с полигоном.

Поясним сразу, что в отличие от, например, приемочных испытаний автомобиля, при испытаниях «Гидрохода» основной целью являлся научный эксперимент, а не прохождение общепринятого эталонного маршрута. Методика проведения этого эксперимента также разрабатывалась самими испытателями, так как подобные экспериментальные исследования еще никогда не осуществлялись.

Все виды испытаний «Гидрохода» проводились при полной массе автомобиля — 12т, для чего он был дополнительно загружен балластом. Поскольку главным условием испытаний являлось движение автомобиля по пашне с силой тяги, для эксперимента требовался второй, «тормозной», автомобиль. Им стал «Урал-4320» — «техничка» автополигона, сопровождавшая команду испытателей «НАМИ-Сервис» почти на всех испытаниях. Полная масса «Урала» была несколько меньше «Гидрохода» — 10 т.

Именно на этом этапе испытаний впервые удалось задействовать возможности «Гидрохода» по реализации любого типа межосевого привода (дифференциального, блокированного, регулируемого) и провести полномасштабное сравнение этих трех режимов работы трансмиссии. Однако следует сразу оговориться: под регулируемым приводом в этом эксперименте понимается не «гибкое» регулирование мощности на каждом колесе, а такая схема, при которой для привода каждой условной оси устанавливается свое передаточное отношение, и автомобиль движется с таким «несимметричным» приводом в течение всего заезда- Это было выбрано по нескольким причинам: во-первых, для упрощения проведения эксперимента, а во-вторых — исходя из предположения, что сцепные свойства на всем протяжении испытательного участка изменяются незначительно (в отличие, например, от случая, если бы автомобиль переезжал с твердой грунтовой дороги на вспаханное поле).

Но так или иначе, это решение позволило исследовать движение «Гидрохода» по фунту при различных комбинациях передаточных отношений приводов условных осей. В результате были найдены такие комбинации, которые позволили автомобилю развить силу тяги большую, чем при блокированной межосевой связи. Ведь, как известно, максимум тяговых возможностей полноприводному автомобилю обеспечивает именно блокированная трансмиссия. Испытания «Гидрохода» показали, что регулируемый привод по величине развиваемой силы тяги существенно превосходит блокированный, не говоря уже о дифференциальном. Результаты этих испытаний имели очень большое значение для автомобильной науки — было экспериментально доказано, что возможности регулируемых трансмиссий позволят вывести полноприводные автомобили на новый технический уровень.

Помимо тяговых возможностей, оценивалась также средняя скорость движения по фунту. Для автомобиля высокой проходимости это важный показатель — чем быстрее машина пройдет сложный участок, тем выше ее проходимость. И хотя здесь сравнение оказалось в пользу дифференциального привода трансмиссии, результаты для автомобиля с регулируемым приводом были очень близки к ним. А если учесть, что фунт был достаточно сухим и твердым, то можно предполагать, что в более сложных условиях, где автомобилю с дифференциальной связью в трансмиссии двигаться значительно труднее, преимущество по средней скорости движения тоже принадлежало бы регулируемому приводу.

В программу комплексных испытаний «Гидрохода» были включены и исследования его управляемости. Эта работа проводилась совместно с коллегами из МГТУ «МАМИ», специализирующихся на изучении управляемости и устойчивости автомобиля. При этом были выбраны стандартные виды таких испытаний — «спираль» и «рывок руля», которые выполнялись на асфальтированной площадке. Регулируемая трансмиссия «Гидрохода» позволила испытателям исследовать, как изменяется управляемость машины при разных схемах колесного привода. Например, постепенно изменяя от заезда к заезду передаточные отношения каждого гидроконтура, можно было придать автомобилю свойства переднеприводного, заднеприводного и полноприводного с распределением мощности по осям в любом соотношении. Такие возможности на тот момент не могли быть реализованы ни на каком другом автомобиле.

Еще больший интерес могли бы представлять испытания автомобиля на управляемость при движении по грунту — в этой области автомобильной науки экспериментальных исследований практически нет. Но пока пришлось ограничиться только несколькими демонстрационными заездами, в одном из которых водитель-испытатель В.М. Ролдугин выполнил разворот на поле на скорости около 30 км/ч с очень малым радиусом поворота.

Другим важным этапом испытаний автомобиля «Гидроход», проводившихся два года подряд, стало исследование его энергетических показателей. Так как «Гидроход» стал первым построенным полноприводным автомобилем с гидрообъемной трансмиссией, предстояло изучить особенности ее функционирования при различных нафузках и схемах распределения мощности по колесам, оценить уровень потерь мощности в гидроприводе, т.е. оценить мощность, реализуемую колесным приводом, и мощность, затрачиваемую на сопротивление качению. Таким образом, предполагалось оценить энергетическую эффективность разработанного привода. Потом эти данные должны были учитываться при разработке алгоритмов управления «гибкой» трансмиссией.

Чтобы обеспечить постоянное сопротивление движению и минимизировать погрешности, этот вид испытаний проводился на асфальтовых дорогах полигона — динамометрической и на комплексе подъемов малой крутизны (4, 6, 8, 10%). Мощность сопротивления движению определялась общепринятым способом — путем буксирования исследуемого автомобиля тягачом с измерением тягового усилия, необходимого для движения.

Зимой 2006 г. впервые состоялся этап зимних испытаний автомобиля, предусматривавший испытания на проходимость по снегу. Для испытаний был выбран участок поля, находившийся непосредственно на территории Автополигона НАМИ.

Однако на тот момент в гидрообъемной трансмиссии применялось масло марки МГЕ-46В, предназначенное для эксплуатации при температуре не ниже -10°С. А поскольку зима 2005—2006 гг. оказалась особенно снежной и морозной, начать испытания удалось только в марте, когда глубина снежного покрова на поле доходила местами до 1 м. В связи с этим программа испытаний была сокращена, и предполагала оценку проходимости автомобиля только при имитации дифференциального и блокированного приводов в трансмиссии. Как и раньше, проходимость оценивалась по величине развиваемой силы тяги. Однако двигаться по снежной целине с 10-тонным «Уралом» на буксире даже с блокированным приводом оказалось практически невозможно. При этом без крюковой нагрузки «Гидроход» свободно преодолевал испытательный участок. Но для того, чтобы все же провести измерения, решили уменьшить крюковую нагрузку, для чего к буксирному прибору «Гидрохода» через трос прицеплялось колесо грузового автомобиля ЗИЛ-130, нагруженное чугунными блоками. Правда, такое решение не могло обеспечить большие значения силы тяги, но главное, что требовалось в данном эксперименте, — обеспечить движение автомобиля в тяговом режиме, который существенно отличается от режима движения одиночного автомобиля. Но и в этом случае уверенное движение по снегу оказалось возможным только при имитации блокированного привода: при гидродифференциальной связи автомобиль не смог пройти испытательный участок.

С учетом опыта испытаний на снежной целине были запланированы дальнейшие исследования, для которых решили подобрать испытательный участок с твердым основанием. На территории автополигона имелась нерасчищенная асфальтированная площадка; глубина снега на ней была немного меньше, чем на поле, — 75 см. Здесь «Гидроход» смог буксировать «Урал» как с блокированным, так и с дифференциальным приводами в трансмиссии, но вполне ожидаемо сила тяги с блокированным приводом оказалась выше, чем при дифференциальном приводе.

Летом 2006 г. начался новый этап комплексных испытаний «Гидрохода» — преодоление профильных препятствий. Еще раз стоит упомянуть, что эти исследования отличались от «классических» испытаний автомобиля на проходимость тем, что в них не ставилось целью пройти маршрут с различными типовыми препятствиями. Здесь, как и ранее при испытаниях на грунте, основной целью ставилось исследование, как влияет регулирование трансмиссии на процесс преодоления препятствия.

Вообще, как известно, максимальные размеры преодолеваемых типовых препятствий — это весьма специфические характеристики, которые актуальны прежде всего для армейских и многоцелевых автомобилей. Автополигон НАМИ, предназначенный для испытаний гражданской автомобильной техники, даже не располагает специальными сооружениями для испытаний на профильную проходимость, которые должны включать уступы различной высоты, рвы переменной ширины и т. п. Поэтому было решено подготовить испытательные сооружения самостоятельно, ограничившись только двумя их типами — уступом (порогом) и рвом.

К сожалению, испытателям пришлось существенно ограничить размеры подготовленных препятствий, особенно порога — нетрудно заметить, что «Гидроход» не лучшим образом приспособлен к преодолению препятствий. Свесы автомобиля превышали 2 м (передний свес имел величину 2,5 м), а дорожный просвет под самой нижней точкой агрегатов трансмиссии составлял 585 мм. Еще до проведения комплексных испытаний было решено отказаться от заднего противоподкатного бруса, но даже без него углы въезда и съезда автомобиля не превышали 20°.

Было рассчитано, что геометрически автомобиль может преодолеть порог максимальной высотой 0,5 м, а ров — шириной до 1,2 м. Конечно, для вездехода такого класса это далеко не выдающиеся показатели, но для решения поставленной научной задачи этого было вполне достаточно. Для устройства порогового препятствия лучше всего подходила бетонная «ванна» бывшего песчаного участка автополигона. Но высота вертикальных стенок этой «ванны», к которым сверху примыкала асфальтированная дорога, составляла 0,7 м. Тогда у основания стенки были уложены прямоугольные бетонные балки, благодаря чему высота стенки уменьшилась до 0,4 м. Перед началом испытательного заезда автомобиль всеми осями въезжал на образовавшийся подиум и останавливался на определенном расстоянии от стенки. Далее начинался собственно испытательный заезд с преодолением препятствия и выходом на дорогу.

Читайте также:  Комбайны Полесье, модельный ряд

Второе испытательное сооружение — ров — устраивалось в соответствии с правилами полевой фортификации: экскаватором вырыли траншею шириной 1,2 м, построили бревенчатые стенки с распорками, а на кромках установили бетонные балки, выполнявшие роль бруствера и бермы. Это обеспечило сооружению защиту от осыпания грунта, благодаря чему на нем могло быть выполнено требуемое число заездов без значительного разрушения рва.

Испытания по преодолению препятствий стали первыми, в которых стало имитироваться «гибкое» регулирование трансмиссии в процессе преодоления препятствия. Если ранее при испытаниях с регулируемым приводом на грунте и асфальте, в относительно стабильных условиях движения, задавалось постоянное рассогласование в трансмиссии, с которым автомобиль проходил весь мерный участок, то здесь, при резких, все время изменяющихся нагрузках, требовалось беспрерывное изменение передаточного отношения привода каждого колеса. Разумеется, что при отсутствии автоматической системы управления реализовать это практически невозможно, поэтому регулирование осуществлялось вручную оператором, с помощью пульта управления. Упрощены были и схемы регулирования — при фронтальном преодолении порога и рва регулировались только насосы.

Преодоление рва — еще более динамичный процесс. Здесь требовалось изменять передаточное отношение каждой оси дважды в процессе преодоления препятствия — в момент проваливания колес каждой оси в ров и в момент выезда из него.

Автомобиль преодолел порог во всех заездах, а при преодолении рва были выявлены лишь отдельные случаи застревания, вызванные неудачной схемой регулирования трансмиссии. Цель эксперимента была достигнута: по результатам испытаний удалось установить наиболее предпочтительный способ управления независимыми колесными приводами при преодолении автомобилем препятствий.

Дополнительно было проведено несколько заездов по преодолению рва под углом. При преодолении таким способом динамические нагрузки на автомобиль гораздо ниже вследствие поочередного «проваливания» колес в ров, но реализовать регулируемый привод здесь значительно сложнее, чем при фронтальном преодолении. Для этого необходимо в движении раздельно управлять не только насосами осей, но и гидромоторами отдельных колес, что при ручном управлении трансмиссией практически невозможно. Поэтому эти заезды проводились как демонстрационные только с нерегулируемым блокированным приводом.

Одноклассники

Наиболее полно достоинства и недостатки регулируемого колесного привода могли бы проявиться при проведении сравнительных испытаний «Гидрохода» с автомобилями-аналогами, оснащенными механической трансмиссией. Поскольку «Гидроход» был построен на базе ЗИЛ-4906, то очевидно, что именно этот автомобиль-амфибия представлялся наиболее подходящим объектом для сравнения. К сожалению, этой машины, к тому времени уже давно не выпускавшейся, не имелось даже на самом заводе ЗИЛ. Однако в распоряжении ОГК СТ имелись два автомобиля ЗИЛ-4972 с кузовом-фургоном в исполнении «мобильный офис», которые обслуживали руководителей завода на соревнованиях по автокроссу с участием заводской команды. Одну из этих машин, которая, как известно, является неплавающим вариантом «Синей птицы», имеет в основе то же шасси ЗИЛ-4906 и примерно равные с «Гидроходом» показатели полной массы, отдел предоставил для проведения испытаний. В конце июля 2005 г. водитель-испытатель В.М. Ролдугин привел машину на автополигон.

Сравнительные испытания двух автомобилей на проходимость проводились на вспаханном участке поля у поселка Дуброво. При этом определялись тяговые показатели при буксировании одним автомобилем другого.

В бортовой механической трансмиссии ЗИЛ-4972 с блокируемым межбортовым дифференциалом могли быть реализованы два типа привода — дифференциальный (с повышенной или пониженной передачей в раздаточной коробке) и блокированный. Испытания проводились со всеми возможными типами привода.

Что касается «Гидрохода», заезды осуществлялись с регулируемым приводом, который реализовывался с такими комбинациями передаточных отношений гидроконтуров трансмиссии, которые наилучшим образом зарекомендовали себя в предыдущих испытаниях по величине силы тяги.

Закономерно, что максимум тяговых возможностей ЗИЛ-4972 продемонстрировал при заблокированном межосевом дифференциале. На «Гидроходе» в тех же условиях удалось достичь больших значений силы тяги. Показатели средней скорости движения у «Гидрохода» с регулируемым приводом были также несколько выше, чем у ЗИЛ-4972, как при блокированном, так и при дифференциальном приводе (при пониженной передаче в раздаточной коробке).

С заботой о земле

Комплексные испытания автомобиля предусматривали также проведение экспериментальных исследований еще в одной области, входящей в сферу научных интересов фирмы «НАМИ-Сервис», — исследования разрушающего воздействия автомобиля на грунт. Интерес создателей автомобилей высокой проходимости к этой области, лежащей на стыке технических и сельскохозяйственных наук, не случаен. При движении по местности колесная машина образует колею, при формировании которой грунт сильно уплотняется, а растительность повреждается или совсем уничтожается. Больше всего страдает верхний плодородный слой почвы при буксовании колес автомобиля. Особенно острой эта проблема является в Заполярье, в условиях тундры, где, как известно, в определенные сезоны вообще запрещена эксплуатация колесных и гусеничных транспортных средств.

Этой важной проблемой озаботились в последнее время многие исследователи и производители автомобилей и сельскохозяйственной техники. Ответом послужило появление в последние годы многочисленных образцов вездеходов с шинами сверхнизкого давления, как построенных на базе серийных автомобилей, так и оригинальных конструкций.

Но каким образом «гибкая» трансмиссия может обеспечить улучшение экологических показателей автомобиля? Поскольку одним из главных разрушающих факторов является буксование колес, которое возникает из-за того, что подводимый к колесу крутящий момент не соответствует его сцепным свойствам, то очевидно, что буксование нужно исключить, обеспечив регулирование подводимой к каждому колесу мощности в соответствии с его текущими условиями качения. Как мы уже отмечали, решить эту задачу может только «гибкая» трансмиссия.

Некоторые замеры для экологических исследований выполнили еще во время предварительных испытаний в сентябре 2003 г. при движении автомобиля по грунту. В дальнейшем эти исследования были развернуты очень широко: во время комплексных испытаний 2005 г. проводилось сравнение «Гидрохода» по экологическим показателям не только с ЗИЛ-4972 и «Уралом», но и со специальными «экологическими» транспортными средствами с шинами сверхнизкого давления, уровень вредного воздействия которых принимается за эталон. Принимая во внимание близкие массы «Гидрохода», ЗИЛ-4972 и «Урала», минимальное разрушающее воздействие показал «Гидроход», причем не только при прямолинейном движении, но и при повороте, когда поверхностный слой почвы повреждается особенно интенсивно.

Молодые ученые «НАМИ-Сервис» разрушающее воздействие автомобиля на грунт изучили очень подробно, и не только в связи с действием буксования. На него оказывают влияние и другие факторы — давление воздуха в шинах, схема поворота, а, следовательно, расположение осей и схема рулевого управления автомобиля, и даже скорость движения. Многие из задач в этой области решались впервые.

Вторая молодость

Опыт, полученный за четыре года испытаний «Гидрохода», позволил выявить многие слабые места в конструкции машины. Поскольку впереди еще предстояла главная работа — отладка автоматической системы управления «гибкой» трансмиссией, требовалось по возможности решить все возникшие технические проблемы.

Если с основным источником проблем на первых этапах испытаний — бензиновым двигателем — вопрос был решен, то в последнее время все чаще возникали нарекания на работу гидравлики. Помимо частых отказов, заметно упали и мощностные показатели гидрообъемной трансмиссии, что было засвидетельствовано по результатам стендовых испытаний, проведенных в октябре 2006 г. на стенде с беговыми барабанами в отделе аэродинамических исследований Автополигона НАМИ.

Поиск причин преждевременного «старения» гидрообъемной трансмиссии исследователи «НАМИ-Сервис» проводили совместно с инженерами фирмы «Bosch Rexroth» — изготовителя гидромашин. Выяснилось, что снижение мощностных показателей связано с тем, что гидромашины длительное время работали на неоптимальных режимах. Дело в том, что серийно выпускаемые гидромашины, которые применяются в основном на строительной и сельскохозяйственной технике, работают обычно при малых скоростях — для них это нормальный эксплуатационный режим. Автомобили же эксплуатируются в совершенно другом скоростном режиме, и автомобильная гидрообъемная трансмиссия должна работать с высокими частотами вращения. А в таких режимах нередки случаи перегрева гидромашин: масло не успевает охлаждаться, нарушается нормальная слаженная работа всех обслуживающих гидравлических систем. В гидромоторах автомобиля были обнаружены дефекты, причиной которых стали, по мнению специалистов «Bosch Rexroth», перегревы трансмиссии при высоких частотах вращения.

Кроме того, выяснилось, что для гидрообъемной трансмиссии было неудачно подобрано гидравлическое масло. За все время опытной эксплуатации «Гидрохода» использовалось масло нескольких марок и с различной вязкостью, а поскольку никаких рекомендаций по его подбору для автомобильных гидрообъемных трансмиссий не существовало, создателям «Гидрохода» оставалось ориентироваться на опыт эксплуатации гидрообъемных приводов в других областях техники, где как мы уже сказали, рабочие режимы существенно отличаются от автомобильных.

Еще на предварительных испытаниях было обнаружено, что даже при синхронном управлении гидроконтурами трансмиссии они работают несогласованно. Но технические возможности не позволяли отслеживать, как гидромашины реагируют на управляющее воздействие, хотя инженерами «НАМИ-Сервис» этот вопрос поднимался неоднократно. Поэтому, когда приняли решение о проведении модернизации автомобиля и появилась возможность заменить при этом все гидромашины, были установлены насосы с устройствами обратной связи. Теперь блок управления мог получать информацию о фактических рабочих объемах каждого насоса. Это существенно повысило надежность системы управления.

Все работы по модернизации проводились в ремонтном боксе на территории Автополигона НАМИ в течение 2008 г. силами инженерного коллектива «НАМИ-Сервис» — А.С. Переладовым, С.Н. Коркиным, Р.Х. Курмаевым, М.А. Малкиным под руководством Г. Г. Анкиновича. Основную инженерную работу по доработке гидрообъемной трансмиссии, проектированию новых узлов для нее вновь выполнил Е.И. Прочко.

Как уже упоминалось, основной целью модернизации «Гидрохода» был переход к автоматической, легко перепрограммируемой системе управления. Поскольку функции ручного управления в новой системе сохранялись, обкатка автомобиля с модернизированной трансмиссией началась еще до завершения отладки автоматики. В январе 2009 г. автомобиль совершил первый выезд, а весной исследователи приступили к обкатке машины по дорогам автополигона — динамометрической, подъемам большой и малой крутизны. Снятый на время модернизации «Гидрохода» кузов решили не устанавливать до завершения исследований, а чтобы распределение нагрузки по осям было равномерным, автомобиль был загружен балластом до полной массы 10 т.

Существенно возросшие после модернизации тягово-динамические показатели «Гидрохода» особенно заметно проявились во время испытаний по преодолению больших подъемов. Тяговые возможности автомобиля с полностью «симметричной» трансмиссией были продемонстрированы успешным преодолением 30- и 40%-ных подъемов передним и задним ходом. Преодоление подъема 50% было решено не проводить, так как существовала опасность смещения балластного груза, размещенного на раме.

По мере отладки автоматической системы управления инженеры «НАМИ-Сервис» приступили к изучению программного управления гидрообъемной трансмиссией. Вначале исследовались самые простые алгоритмы управления, имитирующие режимы движения автомобиля с блокированным или дифференциальным приводами. Эти эксперименты стали проводиться в боксе на вывешенном автомобиле, и вскоре было решено перевести опытный образец в лабораторию, сделав его на время отладки системы автоматического управления испытательным стендом. В конце 2009 г. на автополигоне выполнили еще несколько экспериментальных исследований при программном управлении трансмиссией, а в январе 2010 г. автомобиль перевезли в МГИУ (бывший завод-втуз при ЗИЛе). Там продолжились работы по отладке системы управления, а через год руководство Московского государственного технического университета «МАМИ» предложило организовать лабораторию перспективных автомобилей с «гибкими» трансмиссиями, в которой «Гидроход» предполагается использовать как ходовой стенд. Предложение было принято, и с декабря 2010 г. автомобиль находится в этой лаборатории, ожидая продолжения исследований.

Подводя промежуточные итоги

Стоит заметить, что и после модернизации «Гидроход» сохранил ряд существенных недостатков по компоновке и конструкции. Надо признать, что некоторые конструктивные особенности «Гидрохода» (прежде всего, геометрические показатели) вынуждали при подготовке испытаний ограничивать условия движения. Это помешало автомобилю полностью реализовать заложенные в него возможности.

Но ведь конструкция этой машины во многом является компромиссной: использование готового шасси, с одной стороны, упростило проектирование автомобиля, а с другой — стало причиной очень плотной компоновки агрегатов трансмиссии, затруднившей доступ к ним. «Гидроход» является макетным образцом, создававшимся не для серийного производства, а для оценки перспектив новых инженерных решений, поэтому многие его системы изготовлены в макетном исполнении. Это позволит инженерам при создании новых образцов полноприводных автомобилей с «гибкими» трансмиссиями учесть достоинства и недостатки примененных на «Гидроходе» решений. А приобретенный первый опыт эксплуатации автомобиля с гидрообъемной трансмиссией оказался ценен не только для конструкторов автомобилей, но и для производителей гидравлических машин.

То, что гидрообъемная трансмиссия придала автомобилю способность плавного трогания, устойчивого движения на малых скоростях при «тракторной» тяге, плавного регулирования силы тяги, не подвергается сомнению. Эти качества положительно сказываются на его проходимости.

Возможно, проводимые специалистами «НАМИ-Сервис» эксперименты покажутся читателю неактуальными для автомобилестроения и даже примитивными. Но дело в том, что в автомобильной науке экспериментально подобные задачи еще не решались по вполне понятной причине — не было объекта испытаний, на котором их можно было бы решить. И только появление опытного автомобиля «Гидроход» позволило провести полноценные исследования, благодаря чему ряд положений теории автомобиля получил экспериментальное подтверждение.

Можно, конечно, поспорить по поводу выбранного шасси с колесной формулой 6×6. Очевидно, что у полноприводного автомобиля с числом осей более четырех преимущество гидрообъемной трансмиссии перед механической будет существеннее. С этим следует согласиться, однако вновь напомним, что перед нами лишь макетный образец.

«Гибкие» трансмиссии не должны сменить традиционные механические — они должны дополнить их, став основным силовым приводом на многоосных полноприводных колесных машинах.

Завершая серию публикаций о машинах Специального конструкторского бюро ЗИЛ, можно сказать, что «Гидроход», разработанный научно-исследовательской фирмой «НАМИ-Сервис», не только «породнился» с машинами легендарного СКВ, будучи построенным на шасси «Синей птицы» — он является достойным представителем уникальных вездеходов ЗИЛ по смелости инженерной мысли, по необычности своей конструкции.

Может быть, наш опытный образец появился слишком рано? Время покажет.

источник: Р.Г. Данилов, М.А. Малкин "АВТОМОБИЛИ ДЛЯ БЕЗДОРОЖЬЯ. «ГИДРОХОД-49061»" Техника и Вооружение 12/2011

Источник https://gst.com.ua/articles/1193-remont-gst-kombajna-niva-remont-gst-gidrostaticheskoj-transmissii-niva-sk-5

Источник http://alternathistory.com/avtomobili-dlya-bezdorozhya-gidrohod-49061-chast-2/

Источник

Источник

Добавить комментарий

Для любых предложений по сайту: [email protected]